Here are the definitions you are say you are using, once we dig through the comments (please put them in the post, this time and next!)
For $\epsilon\gt0$ and a point $x$, $V_{\epsilon}(x) = \{y\mid d(x,y)\lt \epsilon\}$.
For a set $A$, the derived set of $A$ is $$A'=\bigl\{x\;\bigm|\; \forall\epsilon\gt0\ \bigl( (V_{\epsilon}(x)\cap A)\setminus\{x\}\neq\varnothing\bigr)\bigr\}.$$
For a set $A$, the closure of $A$ is defined to be $\overline{A}=A\cup A'$.
For simplicity, let$$F=\{x\mid \forall\epsilon\gt0 \ (V_{\epsilon}(x)\cap A\neq\varnothing)\}.$$We want to prove that $F=\overline{A}$.
To prove that $\overline{A}\subseteq F$, note that if $x\in A'$, then by definition we have that for all $\epsilon\gt0$, $V_{\epsilon}(x)\cap A\neq\varnothing$, so $x\in F$. Thus, $A'\subseteq F$. And if $x\in A$, then for all $\epsilon\gt 0$, $x\in V_{\epsilon}(x)\cap A$, so $x\in F$. Thus, $A\subseteq F$ also holds. Thus, we have$$\overline{A} = A\cup A'\subseteq F.$$
Conversely, let $x\in F$; to prove that $x\in\overline{A}$, we need to show that $x\in A$ or that $x\in A'$. If $x\in A$, then we are done. So assume that $x\in F$ and $x\notin A$. Let $\epsilon\gt 0$. We want to show that $(V_{\epsilon}(x)\cap A)\setminus\{x\}\neq\varnothing$.
Because $x\in F$, we know that $V_{\epsilon}(x)\cap A\neq\varnothing$. And because we are assuming that $x\notin A$, then it follows that $x\notin V_{\epsilon}(x)\cap A$. Thus, $(V_{\epsilon}(x)\cap A)\setminus\{x\} = V_{\epsilon}(x)\cap A \neq\varnothing$. We have thus shown that the intersection of $V_{\epsilon}(x)$ with $A$ contains points other than $x$. As this holds for every $\epsilon\gt 0$, it follows that $x\in A'$.
Thus, we have shown that if $x\in F$, then either $x\in A$ or else $x\in A'$. Thus, $F\subseteq A\cup A'= \overline{A}$.
This proves that $F=\overline{A}$, as desired.